Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | \(-h_{5}-2h_{4}+2h_{2}+h_{1}\) | \(g_{9}+1/3g_{8}\) | \(g_{11}+3/4g_{5}+3/4g_{1}\) | \(g_{3}\) | \(g_{7}+3g_{6}\) | \(g_{12}\) | \(g_{14}+g_{13}\) | \(g_{10}\) | \(g_{15}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}-6\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+6\psi\) | \(4\omega_{1}-6\psi\) | \(4\omega_{1}\) | \(4\omega_{1}+6\psi\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{2\omega_{1}-6\psi} \) → (2, -6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{1}+6\psi} \) → (2, 6) | \(\displaystyle V_{4\omega_{1}-6\psi} \) → (4, -6) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{4\omega_{1}+6\psi} \) → (4, 6) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | |||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-6\psi\) \(-6\psi\) \(-2\omega_{1}-6\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+6\psi\) \(6\psi\) \(-2\omega_{1}+6\psi\) | \(4\omega_{1}-6\psi\) \(2\omega_{1}-6\psi\) \(-6\psi\) \(-2\omega_{1}-6\psi\) \(-4\omega_{1}-6\psi\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+6\psi\) \(2\omega_{1}+6\psi\) \(6\psi\) \(-2\omega_{1}+6\psi\) \(-4\omega_{1}+6\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\) | \(\displaystyle M_{4\omega_{1}-6\psi}\oplus M_{2\omega_{1}-6\psi}\oplus M_{-6\psi}\oplus M_{-2\omega_{1}-6\psi}\oplus M_{-4\omega_{1}-6\psi}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi}\oplus M_{2\omega_{1}+6\psi}\oplus M_{6\psi}\oplus M_{-2\omega_{1}+6\psi}\oplus M_{-4\omega_{1}+6\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) |
2\\ |